Pseudo-Frobenius numbers versus defining ideals
Naoyuki Matsuoka
Meiji University, Japan

Introductory talk: Saturday, December 5, 2020
9:00 am - 10:00 am (Eastern Time USA)

Research talk: Saturday, December 12, 2020
9:00 am - 10:00 am (Eastern Time USA)

Abstract: Let \mathbb{N}_0 denote the set of non-negative integers. A submonoid H of \mathbb{N}_0 is called a numerical semigroup if $\mathbb{N}_0 \setminus H$ is a finite set. Let k be a field. For a numerical semigroup H, we set $k[H] = k[t^h \mid h \in H] \subseteq k[t]$, where t is an indeterminate over k, and call it the numerical semigroup ring of H over k. $k[H]$ is a 1-dimensional Noetherian integral domain (hence is a finitely generated k-algebra and Cohen-Macaulay) and is usually regarded as a graded ring by $\deg t = 1$. For a numerical semigroup H, we set

$$PF(H) = \{ \alpha \in \mathbb{Z} \setminus H \mid \alpha + h \in H, \forall h \in H \setminus \{0\} \}.$$

An element $\alpha \in PF(H)$ is called a pseudo-Frobenius number of H.

In the first talk, we will explore the basic properties of numerical semigroups and numerical semigroup rings. Especially, let me show some characterizations of ring-theoretic properties of $k[H]$ in terms of $PF(H)$. In the second talk, we will deal with a problem to find a connection with the behavior of $PF(H)$ and the defining ideal of $k[H]$. Let me give a partial answer and a conjecture on the problem. The second talk is based on joint works with Shiro Goto, Do Van Kien, and Hoang Le Truong.